Weighted weak-type iterated and bilinear Hardy inequalities
نویسندگان
چکیده
We characterize the good weights for a certain weighted weak-type iterated Hardy inequality to hold. As consequence, we get characterizations of some bilinear inequalities.
منابع مشابه
Weighted Weak Type Inequalities for the Hardy Operator When
The paper studies the weighted weak type inequalities for the Hardy operator as an operator from weighted L to weighted weak L in the case p = 1. It considers two different versions of the Hardy operator and characterizes their weighted weak type inequalities when p = 1. It proves that for the classical Hardy operator, the weak type inequality is generally weaker when q < p = 1. The best consta...
متن کاملOn Weighted Remainder Form of Hardy-type Inequalities
∣ p . Hardy’s inequality thus asserts that the Cesáro matrix operator C = (cj,k), given by cj,k = 1/j, k ≤ j and 0 otherwise, is bounded on lp and has norm ≤ p/(p − 1). (The norm is in fact p/(p − 1).) Hardy’s inequality leads naturally to the study on lp norms of general matrices. For example, we say a matrix A = (aj,k) is a weighted mean matrix if its entries satisfy aj,k = 0, k > j and aj,k ...
متن کاملSome Hardy Type Inequalities with Weighted Functions via Opial Type Inequalities
In this paper, we will prove several new inequalities of Hardy type with explicit constants. The main results will be proved using generalizations of Opial's inequality.
متن کاملCarleman type inequalities and Hardy type inequalities for monotone functions
This Ph.D. thesis deals with various generalizations of the inequalities by Carleman, Hardy and Pólya-Knopp. In Chapter 1 we give an introduction and overview of the area that serves as a frame for the rest of the thesis. In Chapter 2 we consider Carleman’s inequality, which may be regarded as a discrete version of Pólya-Knopp’s inequality and also as a natural limiting inequality of the discre...
متن کاملBilinear Operators on Herz-type Hardy Spaces
The authors prove that bilinear operators given by finite sums of products of Calderón-Zygmund operators on Rn are bounded from HK̇11 q1 × HK̇ α2,p2 q2 into HK̇ q if and only if they have vanishing moments up to a certain order dictated by the target space. Here HK̇ q are homogeneous Herz-type Hardy spaces with 1/p = 1/p1 +1/p2, 0 < pi ≤ ∞, 1/q = 1/q1 +1/q2, 1 < q1, q2 < ∞, 1 ≤ q < ∞, α = α1 + α2 a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2023
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2023.127284